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THEORETICAL ANALYSIS OF BUBBLE D~AMICS 
FOR AN ARTIFICIALLY PRODUCED VAPOR BUBBLE IN 

A TURBULENT STREAM 
THEODORE T. ROBIN* and NATHAN W. SNYDRR~ 

North American Rockwell Corporation, El Segundo, California 

(Received 3 1 December I%8 a& in revised form 28 July 1969) 

AMrae&-A mathematical model is given for an arti&ially produced vapor bubble growing on a surface 
and into a turbulent subcooled stream flowing parallel to the surface. This model was tested for steam 
injection through a O-0135 in. hole! in a stainless steel plate and into a water stream with Reynolds numbers 
from about 0.9 x 10’ to 2.0 x 105, inlet bulk temperatures from 80 to 14O”F, and near atmospheric 
pressure. Under these conditions about 4000 bubbles per s were formed with a 0.024133 in. radius Heat 
transfer per bubble varied from about 1 x 10s to S x 10’ Btu Basic considerations of bubble dynamics 
for this model are discussed. tindensation at the bubble ~~r-~~~nt stream interfaee is a major 
component of this model. Subsequent ditTusion of the associated latent heat into the turbulent stream was 
also important. Mathematical equations are given, and the method of solution is indioated. Agreement 

with experimental results demonstrates the validity of this model and the method of solution. 
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specific heat ; 
hydraulic diameter ; 
thermal conductivity ; 
mass rate of evaporation or condensa- 
tion; 
molecular weight of fluid ; 
pressure of vapor in bubble ; 
pressure of liquid in which bubble is 
growing; 
P&St number, Ud/.$, ; 
heat generation rate associated with 
condensation or evaporation ; 
radial coordinate ; 
dimensionless radial coordinate; 
bubble radius ; 
time derivative of R ; 
time derivative of & ; 
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universal gas constant ; 
time ; 
dimensionless time coordinate ; 
temperature ; 
initial temperature of cooling fluid ; 
saturation temperature corresponding 
to the local fluid pressure ; 
liquid surface temperature ; 
magnitude of velocity ; 
velocity vector ; 
one dimensional coordinate; 
I’ - Y; 
height above the channel wall ; 
a~o~~ation coefficient defined as 
the ratio of the actual amount of con- 
densation (or evaporation) to that pre- 
dicted by kinetic theory ; 
dimensionless radial coordinate for 
bubble wall ; 
d y/dt’ ; 
eddy thermal diffisivity in turbulent 
flow; 

k 
effective thermal di~ivity, - 

P&l 
+Eh; 
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0, angle ; 
H -cost?; 

P, vapor density ; 

P*T vapor saturation density at T,,; 

Ply liquid density ; 

0, surface tension ; 

TOT shear stress at the wall ; 

Q dimensionless temperature difference 
in liquid. 

INTRODUCTION 

HEAT transfer rates at the surface of vapor 
bubbles growing in a turbulent subcooled 
stream are enormous. Experiments [l-3] have 
shown that heat transfer coefficients of 300000 
Btu/h ft’ “F or higher are easily obtained for 
near atmospheric pressure systems. Latent heat 
associated with condensation on the bubble 
surface represents a large heat input to the 
liquid surrounding the bubble. Because no 
hydrodynamic boundary layer is present at the 
surface of the bubble, thermal resistance in the 
liquid is low corresponding to eddy diffusion. 
This mode of heat transfer is of interest because 
of its similarity with subcooled nucleate boiling 
in forced convection. Another application may 
be direct contact heat exchangers. By forcing 
vapor through a porous wall, the resulting 
bubbles will produce a large heat source in the 
turbulent core as vapor condenses. This process 
will bypass the high thermal resistant boundary 
layer. Main stream pressure drop should be 
similar to that of subcooled nucleate boiling. 
Theoretical analysis of this mode of heat 
transfer may yield insight useful in the design of 
novel heat exchangers. 

In a previous paper [2] the mass transfer 
model [4] for a bubble in subcooled nucleate 
boiling was described in some detail. This 
process involves evaporation from a thin liquid 
film between the heated surface and the bubble 
vapor and the simultaneous condensation of 
vapor on the bubble cap which extends into the 
turbulent core of the stream Experimental 
results with an artificial bubble, produced by 
injecting vapor through a small hole, indicate 

that mass transfer is potentially an important 
mode of heat transfer in subcooled nucleate 
boiling in forced convection [2]. However, this 
measurement alone does not determine the 
amount of condensation on the surface of a 
single bubble in subcooled nucleate boiling in 
forced convection. In that case, the vapor source 
-thin liquid film evaporation-is not the same 
as vapor injection through a small hole. To 
experimentally measure this condensation would 
be a difficult task. An accurate theoretical model 
for bubble dynamics in subcooled nucleate 
boiling would be useful in estimating the amount 
of condensation and other quantities which are 
difficult to measure. Validity of the general 
concepts and methods of solution should be 
demonstrated first. Such a test is possible using 
the experimental results of the artificial bubble 
experiment [2, 31 mentioned previously. Devel- 
opment of the model and a method of solution 
are given along with a comparison with experi- 
mental results. Methods developed here have 
been applied to the case of bubbles in subcooled 
nucleate boiling in forced convection, and the 
results are to be presented in a following paper. 

GENERAL CONSIDERATIONS IN BUBBLE 
DYNAMICS 

Mass transfa between liquid and vapor phase 
Evaporation rate from a liquid surface into a 

vapor whose density is less than the saturation 
density corresponding to the liquid surface 
temperature is approximated by [5] : 

‘2 ROT,, + 
m = a 2aM (p - p*j. 

[ 1 
(1) 

If p* is greater than p, equation (1) gives the 
magnitude of the condensation rate. Liquid 
surfaces associated with growing and collapsing 
bubbles are believed to be new and clean ; thus, 
an accommodation coelficient of 19 was used 
in these calculations. There are two prime issues 
associated with the value of M determined by 
past experiments. These issues have been dis- 
cussed by Hickman [6,fl who performed clever 
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experiments to prove his point. First, when bl 
was determined from evaporation of water by 
certain experimenters, they located their thermo- 
couples below the inter&e and measured a 
temperature higher than that at the surface 
which was being cooled by the evaporation. 
Calculations of a were subsequently too low. 
Secondly, the surfaces were “old”. That is, they 
had been in existence for many seconds or 
minutes. This invited either molecularly thin 
impurities to be lodged in the surface or for 
strong “potential wells” to form which also can 
result in low values of a During boiling the 
surface forms in several ps and the entire bubbSe 
lifetime is 250-500 us in forced convection 
subcooled nucleate boiling and several ms in 
pool boiling Thus, evaporation and condensa- 
tion occurs on surfaces that are very new and 
clean. 

Dynamic equation for bubble radius 
The Rayleigh equation [S] for groti of an 

isothermal bubble is given as : 

In some cases an additional pressure term 
representing the effect of surface tension is 
sub~act~ from the ant-hand side of ~uation 
(2). This term is 2 a/R where cr is the surface 
tension. The smallest value of R considered in 
this work was 0401 ia and for the case of water, 
the missing term for the smallest radius has a 
value of approxi~t~ly 1 psi. As R increases, 
this value decreases. P - P, may be as high 
as 20-30 psi initially and decreases as the bubble 
grows. Surface tension was neglected in this 
work. 

General scheme of bubble dynamics 
In this model, use was made of a control 

volume concept. The bubble was considered to 
be a hemisphere with its base on a flat surface. 

One boundary of the control volume was the 
interface between liquid and vapor at the 
surface of the hemisphere. The other boundary 
was the vapor-metal interfaces with a hole for 
vapor insertion at the base of the hemisphere. 

At the bubble top, mass was allowed to cross 
the control surface by condensation or evapora- 
tion. If an amount of mass was condensed on 
the liquid surface during a time interval, the 
total amount of mass in the control volume was 
made smaller by that amount. However, the 
actual mass added to the liquid stream was 
neglected with respect to the total amount of 
mass in the stream and with respect to the 
dynamic motion of the stream (i.e. momentum 
effects were neglected). Also, heat conduction 
between vapor and liquid across the interface 
at the bubble top was neglected However, the 
latent heat of condensation or evaporation was 
included as a source or sink in the heat balance 
of the liquid surrounding the bubble. The value 
for the latent heat was taken to be the saturation 
value corresponding to the bubble vapor density. 

During most of the bubble lifetime, condensa- 
tion at the bubble top provided a mass output 
from the bubble. In the experiment a mass input 
was provided by forcing a flow of steam grout 
a tiny hole in the plate. Experimental values for 
the average mass input over the bubble life were 
determined In the model for this case, the mass 
input to the control volume consisted of a 
constant amount of steam per unit time. 

In the control volume the main concern was 
the total amount of mass inside the bubble, 
while in the surroundings the main concern was 
the thermal effect of the latent heat. ~turation 
was assumed for the state of the vapor in the 
bubble. The saturation density was calculated 
as the vapor mass present in the control volume 
divided by the volume. Pressure and temperature 
of the mass in the control volume was assumed 
uniform. Equation (1) governed the rate of mass 
flow across the control volume boundaries. 
Equation (2) determined the rate of growth of 
the bubble; the driving pressure d~erenti~ was 
a function of time. 
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BUBBLE DYNAMICS FOR THE ARTIFICIAL 
BUBBLE 

Description of bobble history and assumptions 
During the bubble life, mass was added at a 

constant rate and removed by condensation on 
the bubble top. Change in the amount of mass 
in the bubble was determined by the difference 
between the mass input and the mass output and, 
in turn, affected bubble pressure. During the 
growth stage, pressum in the bubble was greater 
than local liquid pressure? and this caused the 
bubble to grow. However, as the surface area of 
the bubble grew larger, the mass output also 
increased because of the increasing area for 
condensation. Eventually, mass output exceeded 
mass input and the total mass in the bubble 
started to decrease. Also, as the bubble volume 
increased, the pressure in the bubble tended to 
decrease. At some point, the pressure became 
less than the local fluid pressure. These effects 
coupled with the dynamics expressed in equation 
(2) then led to a decreasing bubble radius and 
thus bubble collapse. 

At any point during the bubble lifetime, the 
rate of mass output was controlled by the vapor 
density in the bubble and the liquid surface 
temperature. This temperature was controlled 
by the rate of heat input associated with con- 
densation at the surface and the transfer of heat 
to the cooling stream p* in equation (2) was 
determined by the liquid surface tem~rat~e. 

Assuming that the bubble was hemispherical 
during all of its lifetime is not completely correct. 
However, high speed photographs [3f show that 
this is not too bad over most of the bubble 
lifetime. During initial and final stages of the 
bubble lifetime, the shape of the bubble was not 
that of a hemisphere. Since the steam came 
through a hole in the heated plate with a diameter 
of 00135 in., the initial interface between 
liquid and vapor was a flat circular disk. This 
was transformed into a roughly hemispherical 
surface at some later time. Because of the 
mathematical complexity of describing such a 
~~sfo~tion, the initial bubble radius was 
assumed to be O-013 in. 

Establishing the vapor state and liquid temp- 
erature distribution at the initial time was 
required. Pressure was the most critical item 
concerning the vapor state. For a bubble in 
real boiling, the initial radius is usually small 
and the initial pressure is usually high (possibly 
as much as 20-30 psia higher than ambient 
liquid pressure}. However, as the bubble grows, 
pressure in the bubble approaches ambient 
liquid pressure. In the experimental case, O-013 
in was usually about 50 per cent of the maximum 
radius. Thus, bubble pressure was chosen 
slightly larger than local stream pressure. First, 
local liquid pressure near the bubble site for the 
run under consideration was determined and 
then the corresponding saturation temperature. 
A temperature slightly greater than this value 
was chosen as the vapor temperature in the 
bubble and the vapor was assumed saturated 
at this temperature. This made the bubble 
pressure shghtIy larger than local liquid pressure. 

As a first approximation to the liquid tempera- 
ture distribution at the beginning of the solution, 
a step distribution was assumed. That is, the 
temperature of a thin shell of liquid around the 
bubble was assumed to be equaf to the bubble 
vapor temperature at that time. The remainder 
of the liquid was assumed to be equal to the 
inlet temperature of the cooling fluid as deter- 
mined in the experiment. Shell thickness was 
chosen so as to account for the heat input to the 
bubble wall during growth from the flat disk 
interface to the hemispherical interface with 
a radius of 0.013 in. This was done by first 
assuming the time required to grow from a flat 
disk to a hemisphere. Heat input during this 
time was calculated by multiplying the time 
interval by the rate of heat input which was a 
constant. Q = mCAT was used to calculate 
the mass of liquid which would experience a 
temperature rise corresponding to the difference 
in temperature of the thin shell and the inlet 
temperature. Knowing the density of the liquid, 
the volume was then calculated from the known 
mass. Finally, since the surface area of the bubble 
was known, the shell thickness was obtained. 
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Initial values for d and # were also required. 
ii was assumed to be zero, and then li was 
calculated using equation (2). A uniform velocity 
profile was assumed for the stream in which the 
bubble was growing. In reality it was that corres- 
ponding to fully developed turbulent flow for 
the high velocity cases. In those cases, the 
boundary layer was of the order of lo- 3 in. and, 
since the bubble radius was usually large 
compared to this value, the uniform velocity 
assumption was justified. Experimental mean 
velocity was used as the magnitude of the 
uniform velocity. However, for the low velocity 
cases, the velocity profile was probably more 
parabolic. Nevertheless, a uniform velocity, 
equal to the mean velocity, was assumed here. 
For high pressure applications, 2000 psi, and 

I u 

FIG. 1. Equivaht coordinate system for the single bubble 
case. 

low velocities, a more accurate description of 
the velocity and initial temperature profiles will 
probably be required. 

Heat difisionpom bubble surface 
By making the bubble spherical rather than 

hemispherical and making the mass input rate 
twice as great as the actual rate, the mathematical 
heat diffusion problem is similar to a case con- 
sidered by Wittke [9]. In his case a uniform flow 
of liquid impinged on a spherical bubble as 
shown in Fig. 1. Since no heat flow occurred in 
the $ direction, the case under consideration 
here and his case were similar under changes 
stated above. For example, the heated plate 
might be considered to be the x-z plane. (Note 
that the heat transfer from the heated plate to 
the fluid by convection was neglected.) The heat 
diffusion equation to be solved was that derived 
by Wittke plus a heat generation term: 

p+ [-u(l -$cose)+y]g 

+; I+$ ( > sineC!!I_$ E 
a6 - h ( ar2 

2aT 1a2T cot88T 
+;g+--+-- 

r ae2 (3) 

where T = T(t, r, 0). 
Heat generation rate will be zero everywhere 

except in a thin shell surrounding the bubble. 
Here the latent heat of condensation (or vapor- 
ization) will be considered a heat source (or 
sink) uniformly distributed throughout the 
shell. The numerical approach here is similar to 
one considered by Dusinberre [lo] for radiant 
heating. Under this procedure the boundary 
condition for the vapor liquid interface is 

aT 0 I ar= 
r = R. 



528 THEODORE 

The other boundary condition is 

aT 0 -= 
ar 

T. ROBIN and NATHAN W. SNYDER 

Also with the transformations, 

y=r’-y and /l = - cos 0 (9) 

equation (8) becomes : 

a@ A-4 i la@ 
where R, is a substantial distance from the 
bubble surface. Boundary conditions in the 8 
direction are 

aT 0 -= 
ae and aT 0 

ae= 

o=o 8 = 180”. 

Initial temperature distribution was described 
previously. Now let 

Q = CT - T,MT,,t - 7”) (4) 

where T, is the initial temperature of the cooling 
fluid and T,,, is the saturation temperature 
corresponding to the local fluid pressure, P,. 
Also let 

t’=4$t 
d2 

(5) 

where d is the equivalent hydraulic diameter of 
the channel. Let 

2r 
r’ = - 

d 
and y = 7. (6) 

Also define a P&let number 

P, = Ud/E;, (7) 

Now using equations (4)-(7), equation (3) be- 
comes : 

2aa i a% cot eaa 
+Tar’+;;ZgF+~- ae 

QM2 
+ 4s~p1GKt - T,) 

(8) 

where i, = dyldt’. 

- z-y 1+ I'2JaY ( 1 Y 

z-f - 

w 
7 l+; ( ) Y ay 

QM2 
+ 4&&c&(7&, - Cj’ (10) 

Numerical approximation to equation (10) 
is developed in [2]. a@/ay and a@/dp on the 
left-hand side of equation (10) could not be 
represented with the same numerical approxima- 
tion as those quantities on the right-hand side, 
possibly caused by the assumed initial tempera- 
ture distribution (see Appendix A). 

Method of advancing numerical solution 
After the solution had been advanced up to 

a time t, the following quantities were known : 
1. State of bubble vapor (density and pressure). 
2. R, I?, 2 and bubble volume. 
3. Amount of mass in the bubble. 
4. Liquid temperature at the vapor-liquid inter- 

face. 
5. Liquid temperature distribution. 

To advance the solution an increment of 
time, the following procedure was used : 

1. Since R, R, # and the bubble vapor pressure 
were known, change in R, k, i’i was calculated 
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with the aid of equation (2) and a Taylor series 
expansion for A and R (see Appendix B). 

2. Equation (1) was used to calculate the 
amount of vapor condensed. This involved 
calculating the saturation vapor density corres- 
ponding to the known liquid surface tempera- 
ture.* Using this value and the known value of 
the bubble vapor density, the amount condensed 
was calculated. 

3. New total mass in the bubble was calculated 
by adding to the old total mass the difference 
between the amount condensed and the amount 
added by the constant rate of mass addition. 

4. Volume was calculated using the new 
value of R found in step 1. This was divided into 
the new mass found in step 3, and the result was 
the new density. Under the assumption that the 
vapor in the bubble was saturated, the new 
pressure was determined from the steam tables. 

5. Latent heat represented by the condensed 
steam was then used along with the numerical 
approximation to equation (10) to calculate the 
new surface temperature and the new liquid 
temperature distribution. 

Following this procedure, the variables were 
determined over the life of the bubble. 

COMPARISON OF MODEL AND EXPERIMENTAL 
RESULTS 

Predictions from the above model were 
compared with experimental data for steam 
injection through 00135 in. hole in a heated 
plate and into a subcooled stream of water 
flowing parallel to the heated plate. The 
experimental data are presented and discussed 
in [2,3 1. Comparison with the model was based 
on maximum bubble volume (radius). Maximum 
bubble volume was determined from high speed 
motion picture film. Bubble frequency was 
about 4000 bubbles per s and camera speed was 
8000 frames per s. Thus, only two or three frames 

* The variation in T,,with 0 was taken into account in 
using equation (1). The bubble surface was divided into a 
number of segm&ta f& the numerical solution and equation 
(1) was applied to each segment individually. 

were available per bubble. Maximum bubble 
volume was plotted as a function of time for 
about 100 frames. The largest bubble observed 
was selected as the maximum bubble size. Since 
the bubble radius is large over a significant 
portion of bubble life, several frames should 
contain bubbles very close to maximum size. 
The largest error involved was caused by the 
assumption of hemispherical shape and the 
fact that the bubble was observed in only one 
plane. Overall error in bubble volume was 
estimated to be + 10 per cent. Bubble frequency 
(lifetime) was also determined from the plot of 
the high speed motion picture film. In a sequence 
of three frames, the bubble was observed to be : 
(1) in initial growth ; (2) near maximum size ; 
and (3) in final state of collapse. Thus, bubble 
lifetime was approximately two times the time 
interval between frames. Error in bubble life- 
time measurement was estimated to be +17 
per cent. Because of the slow framing rate, no 
attempt was made to determine an experimental 
radius vs. time curve. 

One unknown in the mathematical model is 
the value of EL that is effective in the liquid 
surrounding the bubble. .$, was assumed, and 
the choice which resulted in agreement between 
theory and experimental results was noted. 
Bubble radius as a function of time as predicted 
by the theoretical model is shown in Fig. 2 for 

--- Estimated \ 
\ 
\ 
\ 
\ 
\ 

F’IG. 2. Bubble radius as a function of time for run no. 7. 
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the conditions of experimental run no. 7 (see [3] ; 
the pertinent variables were: mass input rate 
= O-692 lb/h, U = 124 ft/s, Tf = llO”F, and 
I’, = 16.0 psia). &, was 1.2 ft’/h, and this 
choice resulted in a maximum radius of 0.0266 
in. as compared to the experimental value of 
00266 in. Predicted value and observed value 
of the bubble lifetime are 286 and 256 ps, res- 
pectively. This comparison is not as good, but 
it is within experimental error. 

Near the beginning and end of the bubble life, 
the theoretical model did not correctly predict 
the physical situation. It was realized that the 
model developed would be most accurate only 
when the bubble size is large. Because the bubble 
size was large during most of its lifetime, the 
theoretical model is acceptable for the present 
even with the poor prediction for small bubble 
radii.* 

Another source of inaccuracy in the solution 
to the model is the use of equation (2) for bubble 
growth in a uniform velocity field. Assuming 
bubble remains spherical in the velocity field 
(as in [9]) equation (2) would have additional 
terms of the order of 4 pU2. This term would be 
negligible for the low velocity cases. For 
U = l-9 ft/s, ipU2 = 0.03 psi and for U = 12 
ft/s, 3 pU2 = 1.0 psi. However, for U = 25.5 
ft/s, + pU2 = 4.5 psi which is about 25 per cent 
of P,. 

From the experimental data [3], an increase 
in the velocity from 12.0 to 25.5 ft/s resulted in a 
25 per cent decrease in maximum bubble radius 
from O-0266 to 0.020 in., other variables held 
essentially constant. Most of this decrease is 
attributed to an increase in &h and a faster move- 

* Theoretical bubble radms shown m Fig. 2 does not 
completely collapse. After an initial collapse, the bubble 
enters a new growth phase. This behavior does not indicate 
that the radius vs. time solution is unstable. The observed 
behavior is caused by the assumption of a constant rate of 
vapor input to the bubble. During the collapse phase, this 
constant input causes a rise in bubble pressure as shown in 
Fig. 6. The resulting bubble growth phase is in accord with 
the assumed dynamic equation for bubble radius, equation 
(2). P - P, becomes large enough to initiate a new growth 
phase. 

ment of colder fluid over the bubble (both 
increasing the condensation rate). The theoret- 
ical maximum bubble radius was a strong func- 
tion of the assumed value of &h ; a 33 per cent 
change in theoretical maximum bubble radius 
could be caused by a 5 per cent change in &h 
(see curves 2 and 3 of Fig. 12 of [2] or of Fig. 4 
of [ 121). Thus, even if the full 25 per cent change 
in maximum bubble radius (caused by changing 
velocity from 12 to 25.5 ft/s) is attributed to 
&N2, only a 5 per cent change in the reported 
value of E,, would be required to have agreement 
between theoretical and experimental maximum 
bubble radius. In the present application, 
inaccuracies because of the use of equation (2) 
in a uniform velocity field, should result in 
errors in the reported values of &h of 5 per cent 
or less. In light of the 10 per cent error in the 
experimental data for maximum bubble radius, 
use of equation (2) was acceptable. Also, 
because the bubble surface was usually not 
smooth, a more detailed analysis does not seem 
warranted. 

.c 

. 
\ 

\ Theory R&? 
- 8 
-.- 9 
-(r-- IO 
- 14 
--- Estimated 

L 0 d 
I / 

50 loo 150 200 

Time, ps 

FIG. 3. Bubble radius as a function of time for runs no. 8-l 1. 

Bubble radius as a function of time (up to the 
maximum bubble radius) for several other 
experimental runs is shown in Fig. 3. Some 
pertinent information is tabulated in Table 1. 
Since the velocity was the same for runs 89 and 
10, the value for the effective thermal diffusivity 
was expected to be approximately the same 
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value for all three runs. Only the change in the Values of E; which yield agreement between 
cooling fluid temperature and that in the vapor experiment and theory are plotted as points in 
input rate would change the experimentally Fig. 4 as a function of the cooling stream 
observed maximum radius in runs 9 and 10 velocity. Since the flow condition was that of 

Table 1. Results of runs no. 8,9, 10 and 14 (see [3]) 

Rull 
(Gs) (f&l) 

Maximum bubble radius 
Model Experimental Deviation 

(in.) (in.) (%) 

8 110 25.5 3.00 001976 0.0200 -1 
9 80 25.5 3.00 001857 0.0172 +8 

10 140 25.5 3.00 002893 00314 -8 
14 110 1.9 006 002763 0.0280 -1 

from the value observed in run 8. ~6, which 
yielded agreement between the theoretically 
predicted maximum bubble radius and that 
experimentally observed for run 8, was used in 
the model for runs 9 and 10. In this way the 

4c 

FIG. 4. Effective thermal diffusivity as a function qf cooling 
stream velocity: solid line is theoretical value for eddy 
diffusivity for fully developed turbulent flow, 0.02 in from 

wall. 

consistency of the theoretical model with the 
actual physical phenomenon could be deter- 
mined. For run 9, the predicted maximum 
radius differed by only +8 per cent from the 
observed value, while for run 10 the difference 
was only -8 per cent. 

fully developed turbulent flow, the theoretical 
value of the eddy ditfusivity for momentum 
transfer in fully developed turbulent flow in a 
pipe at a distance of 002 in. from the wall is 
shown for comparison. This theoretical value 
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Ra. 5. Bubble mass as a function of time for run no. 7. 
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was calculated using the following expression large values of R. Hence, the behavior indicated 
[ll] : in the following plots for times < h 30 ps and 

E, = (CM)222 (1 - ;)y/(;). 
> 200 ps are certainly questionable. Figures 5-7 

(11) represent the bubble mass, the bubble pressure, 
and the liquid surface temperature as functions 

Good agreement between EL and s,,, offers a of time, respectively. Figures 8-13 represent the 

significant degree of confidence in the concepts 
and methods used in the solution to this model. 

I0 i 1 t t 1 
0 50 100 150 200 250 300 

Time, ps 

FIG. 6. Bubble pressure as a function of time for run no. 7. 

2701 
I 

-*--•- Theory 

Radial distance, in x IO4 

FIG. 8. Dimensionless temperature difference for the cooling 
liquid as a function of radial distance from the bubble sur- 

faciz for @ = - 1 (upstream direction) for run no. 7. 

150 ; 
8 I 

50 I00 150 200 250 300 

Time, ps 

FIG. 7. Liquid surface temperature as a function of time for 
run no. 7. 

-*-*- Theory 

A number of variables were recorded for run 
7 in order to characterize this solution to 

;. 

Radial distance, in x IO4 

the theoretical model. Again, it is emphasized 
that because of the assumptions concerning the 

FIG. 9. Dimensionless temperature distribution for the cool- 

initial conditions, the solution is most valid for 
ing liquid as a function of radial distance from the bubble 

surface for fi = - 1 (upstream directiork) for run no. 7. 
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temperature distribution in the liquid surround- 
ing the bubble at various times during its life. 
Liquid surface temperature as a function of p 
at various times during the bubble life is shown 
in Fig, 14. To be noted in Fig. 14 is the fact that 
the temperature of the liquid surface varied at 

Ftadiol diktonce, in x IO4 

FIG. 10. ~~~~~ temperatum distribution for the 
cooling liquid as a function of radial distance from the bubble 

surface for p = - 0.1667 for cuu no. 7. 

-*-- Theory 

Radial distance, in x IO4 

timesasmuchas20”Ffromp = -1 top = +1. 
Also, the temperature distribution in the up- 
stream direction (see Fig. 9) was much steep& 
than in tbe dosses direction (see Fig. 13). 
These results are reasonable; since cold fluid 
comes from the upstream direction, the surface 

0.7, 

. 

0.6- \ 
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0.4 - 
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\ 
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\ 

-*-•- Theory 
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0.3- \ \ 
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Time a 2-O pe 
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o.t- l \\ *l 

, l *., '\._ 
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Radial dhrtonce, in x IO4 

FW. 12. Dimensionless teqnsature distribution for tke 
cooling liquid as a function of radial distana from tbc bubble 
surface for p in + 1 (dowustream dire&on) for IUD no. 7. 

--Theory 

Radio1 distance, in x IO4 

RG. 11. IXm~nless &empcratus distribution for tb~ RG. 13. Dimeusionkss temperature distribution for the 
~~~~~a~~~~~f~~~bb~ ~~~q~d~8f~~~~~f~~~~ 

suffaceforp =i - 0*1667 for run no. 7. surfaozforp= i-1 (downstmam dhction) for run no. 7. 
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230 

22Q- Time, ps 

-*-•- Theory 
ZIO- 

'5%O-o.S-O+04-0.2 0 0.2 0.4 0.6 CM I.0 

P 

Fro. 14. Liquid surface temperature as a function of p for 
run no. 7. 

temperature of the fluid at this end should be 
coldest. Also, as the fluid moves over the 
bubble, its temperature should increase due to 
the latent heat of condensation. Experimental 
values for the relations indicated in the above 
plots would be useful. 

CONCLUSIONS 

1. Effective thermal diffusivity near a single 
steam bubble growing in a fully developed 
turbulent stream is approxima~ly the value of 
the eddy diffusivity for momentum transfer 
about one bubble radius from the wall. Thisvalue 
ranged from about @l to 3.0 ft’/h for the case 
considered. 

2. Coupling of equations (1) and (2) with a 
heat and mass balance of the bubble system 
appears to be suffkiently accurate for predicting 
bubble dynamics. 

3. This model may be used, as a first approxi- 
mation, to predict the rate of heat transfer in 
possible heat exchanger applications using this 
mode of heat transfer. 
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APPENDIX A 
@/jay and iX@ on the left-hand side of equation (10) 

could not be approximated in the same manner as those 
quantities on the right-hand side. The presence of these 
derivatives on the right-hand side was caused by heat 
conduction, whereas, on the left-hand side the reason was 
fluid motion. The cause which would not allow the two 
cases to be treated in a similar manner can be explained by 
considering a simplified one-dimensional problem of the 

same nature. 
Consider one-dimensional flow of liquid in the +Y 

direction (see Fig. 15) with a velocity of U ft/s with respect 
to the coordinate system. Now the equation under con- 
sideration is : 

aw, d 
at 

+ v vqx, t) = &;IVV(X, t) (12) 

where V is the velocity vector. The term V. VT is caused by 
b&c fluid transport. Equation (12) is equivalent to 

n-(x, t) + u aT(x, t) 
___I se &b 

a2T(X, t) 
-. 

at ax ax2 
(13) 
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For this illustration, ei is assumed to be zero and equation 
(13) becomes: 

wx, t) 
at 

+ .aT(x,t)=, 
ax 

The usual approximations to these derivatives are 

aT T,,,+, - T,,” 
at’ Dt 

(14) 

ax - 2Dx 

where J relates to the space coordinate, n relates to time, 
Dx is an increment of x, and Dt is an increment oft. Using 
these equations, (14) becomes : 

T J.w+l - T,,, + u TJ+I,, - T,-i,m 
E 

,, 

Dt ‘- 2Dx - 

or 

U- 

Now assume the initial condition such that T,, ,, = T,_ i, c 4 
T,,,.,. In this case, equation (15) indicates that the higher 
thevalueofT,+,., thelowerthetemperatureatJwillbeat 

+aD 

FIG. 15. Coordinate system for the one-dimensional illus- 
tration. 

time (a + 1). Dt. Physically, this is impossible. Since U is 
in the + x direction and since e; equals zero, TJ+ 1 at any 
time should have no effect on T* The error in the above 
derivation arises from the approximation of dT/ax. A 
correctoneforthiscaseis: 

Using this, the equivalent of equation (15) is : 

Dt Dt 
%+I = T,,, + uij+,m - u&T,.m. (16) 

Equation (16) is logically correct. Consider the initial 
condition: T,,, s TJ_,,p As fluid of high temperature, 
T,,c, leaves cell J to go mto cell J + 1 and as fluid of low 
temperature, TJ-I,,, leaves cell J - 1 to go into cell J, the 
resulting temperature of the homogenized fluid in cell J is 
lower than TJ, ,,. Furthermore, the higher the value of TJ _ 1, ,,, 
and the lower the value of T, _ iso, the larger would be the 
change in temperature of location J. Thus, derivatives 
arising due to the transport of bulk fluid must be treated in 
a non-conventional manner for the present problem. 

During the initial attempt to solve equation (lo), several 
methods were used. All attempts used the conventional 
numerical approximations to the derivatives a@/ay and 
a@& regardless of their origin. Implicit, explicit and a 
combination implicit-explicit were all tried. However, an 
instability in the predicted temperature. distribution per- 
sisted. Reasoning similar to that illustrated above in the 
one-dimensional case led to a representation of these terms 
which produced a stable solution. 

APPENDIX B 

Numerical approximations for R, k and R are indicated 
below: 

R .+,=R.+ka~Dt+kmD; 

k,+,=k,+R;Dt 

where R,, indicates the bubble radius at time n. Dt. 

ANALYSE THEORIQUE DE LA DYNAMIQUE DES BULLES POUR UNE BULLE DE 
VAPEUR PRODUITE ARTIFICIELLEMENT DANS UN ECOULEMENT TURBULENT 

RM donne un modele mathematiquc pour une bulk de vapeur produite artificiellement croissant 
sur une surface et a l’intkieur dun Coulement turbulent sous-refroidi parallele a la surface. Ce modele 
a W essay& pour I’injection de vapeur a traven un trou de 0,343 mm de diam&re dans une plaque d’acier 
inoxydable et dans un kcoulement d’eau avec des nombres de Reynolds allant d’environ 49.10 A 2. 105, 
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des temp&atures globales d’entr&e de 267 B 60°C et environ il la pression atmosph&ique. Sous ces con- 
ditions, environ 4ooo bulles par seeode &aient form&es avec un rayon de 450 B 475 mm de diam&re. 
Le transport de chaleur par bulIe variait d’envirou lo-’ & 5. to-” Joule. Des consid&ations de base de 
la dynamique des bulles pour ce mod&e sent discut&s. La condensation & i’interface bulle de vapeur- 
6coulement turbulent est un constituaut important de ce modhle. La diffusion qui s’ensuit de la chaleur 
late& associ6e dam I’Bcoulement turbulent Ctait 6galement importante. Les dquatious math&matiques 
sent don&es et la m&hode de &solution est indiqti. L’accord avec les r&&tats exp&imentaux dbmontre 

la vaIidit6 de ce mod&e et de la m&ode de &solution. 

THEQRETISCHE UNTERSUCHUNG DER BLASENDYNAMIK FUR EINE KmSTLICH 
ERZEUGTE DAMPFBLASE IN TURBULENTER STRt)MUNG 

Zeroes wird ein mathematisches Model1 angegeben fiir eiue kiinstlich erzeugte DampIbiase, 
die auf einer Oberfl%&e in einen turbulenten unterk~~~ Strom, der parallel zur Oberfl~che flies& 
hineiawrichst. Dieses Modell wurde getestet fiir Dampfinjektion duroh eine 0,343 mm Bohrung in einer 
Platte aus rostfreiem Stahl in einen Wasserstrom mit Reynolds-Zahlen van 0,9 x lo4 his 2,0 x 10’ und 
Einlass-Badtemperaturen von 27 his 6O”C, in der N&e des atmosphrischen Druokes. Unter diesen 
Bedingungen wurden etwa 4000 Blasen pro Sekunde gebildet mit 0,5-0,8 mm Radius. Die Wlrmemeuge 
pro Blase variierte von etwa 0,01 his 0,053 J. Grnndlegende Betrachtungen der Blasendynamik fiir $ieses 
ModeU wnrden diskutiert. Die Kondensation an der Blasengrenz zwischen Dampf und turbulenter 
SWmung ist eine Hauptkomponente des Mode% Anschliessende Diffusion der damit verbundenen 
Verdampfungswiirme in die turbulente Strirmung war ebenfalls wichtig. Mathematische Gleichungen 
wurden aufgestellt, und dii Liisungsmethode ist angedeutet. ~bereinstimmung mit experimentellen 

Ergebnissen’zeigt die Gtiltigkeit dieses Modells und der Liisungsmethode. 

TEOPETMYECKBfl AHAnM3 fi&IHAMMICM IIY3bIPbKA - BCKYCCTBEHHO 
CO3~AHHOI’O IIY3bIPbKA HAPA B TYPBYJIEHTHOM HOTOICE 

~~oT~~~~-~P~~~~~T~~ MaT~~aT~~ee~a~ Moaenb ~~cl{yccTBeHHo eoa~aBaeMor0 nyaarparta, 
PaCTy~erO Ha nO~epX~OCT~ R B ~3pa~~e~bHOM 3T01 ~OBepXHOCT~ Typ6y~eHTHO~ ItOTOKe 

nepeoxnamAeeaaol %IIA~ocrn. 3Ta hxozeenb nposepnaacb nns cnysaa BAysa napa wpe3 
0.0135 J@~M. 0TaepcTMe B nnacTIIue RR wepxcaseloqe2t cTanH B IIOTOK B~A~I c YEzcJIaMII 
Peflnonbgca OT 0.9 x 104 ~(0 2.0 ~‘105, TeMnepaTypoB RRpa nOTOHa wa sxone OT 80 ~0 140°$ )1 
AaBJIeHEieM, 6jl1i3KOB H al'MOC+epHOMJ'. npl% aTLlX YCjroBMfIX B CeKJ'HA;y 06pa30B~BaJII4Cb 

OKOjrO 4000 Ily3WpbKOB paJ&¶yCOM 0,02-0,03 p;K&Ma. Te~~oo6Me~, ~P~XO~~~~C~ Ha O~&zlri 

rrysatpetc, cocTau~~~ 0~ 1 x lo- 5 ~0 5 x lo- 5 BTE. PaccMaTp~~a~Tc~ ocH0B~~e ~006pa~eH~~ 
OTHOCHTeJIbHO ~HHaMl%KlS ny3bIJ?bKOB jJJIR 3TOtr MO,QeJIH. OCHOBHISM KoMnoKeHToM moLtenK 

niwnew2 HOH@?HCaIWH Ha II~B~~XH~CTH pasplejra nyahlpeH napa - Typ6yaeHTnblB nOTotE, 
HeMWIOBaWHaH ~H449'3MH CBRBaHHOrO CKPMTOrO TeIIJIaBTYP6YJfeHTHUi%IlOTOK.~OJIJ'YeHbI 

M3.TeMaTHYeCKRe ypaBHeHr?R H yKa3aHbI MeTOJ@I PeIIJeHWi. COOTBeTCTBkiO C 3KCIIepHMeH- 

TaJfbHhflll pe3y~~TaTaM~ CB~~eTe~b~TBy@T 0 njNi.fO~HOCT~ 3TO% MO&eJiEi R MeTOAa pe%UefZRR. 


