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THEORETICAL ANALYSIS OF BUBBLE DYNAMICS
FOR AN ARTIFICIALLY PRODUCED VAPOR BUBBLE IN
A TURBULENT STREAM
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Abstract—A mathematical model is given for an artificially produced vapor bubble growing on a surface
and into a turbulent subcooled stream flowing parallel to the surface. This model was tested for steam
injection through a 0-0135 in. hole in a stainless steel plate and into a water stream with Reynolds numbers
from about 0-9 x 10* to 2:0 x 10%, inlet bulk temperatures from 80 to 140°F, and near atmospheric
pressure. Under these conditions, about 4000 bubbles per s were formed with a 0-02-0-03 in. radius, Heat
transfer per bubble varied from about 1 x 10° to 5 x 10° Btu. Basic considerations of bubble dynamics
for this model are discussed. Condensation at the bubble vapor-turbulent stream interface is a major
component of this model. Subsequent diffusion of the associated latent heat into the turbulent stream was
also important. Mathematical equations are given, and the method of solution is indicated. Agreement
with experimental results demonstrates the validity of this model and the method of solution.

NOMENCLATURE

C,  specific heat;

d hydraulic diameter ;

k; thermal conductivity;

Mm;  mass rate of evaporation or condensa-
tion;

M, molecular weight of fluid;

P, pressure of vapor in bubble ;

P_, pressure of liquid in which bubble is
growing;

Py Péclét number, Ud/s;,;

0, heat generation rate associated with
condensation or evaporation;

r, radial coordinate ;

r, dimensionless radial coordinate;

R bubble radius;

R time derivative of R ;

R time derivative of R;

* Atomics International, Division of North American
Rockwell Corporation, Canoga Park, California.
t North American Rockwell Corporation, Executive

Offices, El Segundo, California; Formerly Neely Professor,
Georgia Institute of Technology, Atlanta, Georgia.

523

»

14
Ep

universal gas constant ;

time ;

dimensionless time coordinate ;
temperature ;

initial temperature of cooling fluid ;
saturation temperature corresponding
to the local fluid pressure ;

liquid surface temperature ;
magnitude of velocity;

velocity vector;

one dimensional coordinate ;

Fo—7;

height above the channel wall;
accommodation coefficient defined as
the ratio of the actual amount of con-
densation (or evaporation) to that pre-
dicted by kinetic theory;
dimensionless radial coordinate for
bubble wall;

dy/dr’;

eddy thermal diffusivity in turbulent
flow;

effective thermal diffusivity, ;—%— +&;
1
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0, angle;
U, ~cosf;
0, vapor density ;
p*,  vapor saturation density at T, ;
p1,  liquid density;
o, surface tension;
To, shear stress at the wall;
D, dimensionless temperature difference
in liquid.
INTRODUCTION

HEeAT transfer rates at the surface of vapor
bubbles growing in a turbulent subcooled
stream are enormous. Experiments [1-3] have
shown that heat transfer coefficients of 300000
Btu/h ft? °F or higher are easily obtained for
near atmospheric pressure systems. Latent heat
associated with condensation on the bubble
surface represents a large heat input to the
liquid surrounding the bubble. Because no
hydrodynamic boundary layer is present at the
surface of the bubble, thermal resistance in the
liquid is low corresponding to eddy diffusion.
This mode of heat transfer is of interest because
of its similarity with subcooled nucleate boiling
in forced convection. Another application may
be direct contact heat exchangers. By forcing
vapor through a porous wall, the resulting
bubbles will produce a large heat source in the
turbulent core as vapor condenses. This process
will bypass the high thermal resistant boundary
layer. Main stream pressure drop should be
similar to that of subcooled nucleate boiling.
Theoretical analysis of this mode of heat
transfer may yield insight useful in the design of
novel heat exchangers.

In a previous paper [2] the mass transfer
model [4] for a bubble in subcooled nucleate
boiling was described in some detail. This
process involves evaporation from a thin liquid
film between the heated surface and the bubble
vapor and the simultaneous condensation of
vapor on the bubble cap which extends into the
turbulent core of the stream. Experimental
results with an artificial bubble, produced by
injecting vapor through a small hole, indicate
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that mass transfer is potentially an important
mode of heat transfer in subcooled nucleate
boiling in forced convection [2]. However, this
measurement alone does not determine the
amount of condensation on the surface of a
single bubble in subcooled nucleate boiling in
forced convection. In that case, the vapor source
—thin liquid film evaporation—is not the same
as vapor injection through a small hole. To
experimentally measure this condensation would
be a difficult task. An accurate theoretical model
for bubble dynamics in subcooled nucleate
boiling would be useful in estimating the amount
of condensation and other quantities which are
difficult to measure. Validity of the general
concepts and methods of solution should be
demonstrated first. Such a test is possible using
the experimental results of the artificial bubble
experiment [2, 3] mentioned previously. Devel-
opment of the model and a method of solution
are given along with a comparison with experi-
mental results. Methods developed here have
been applied to the case of bubbles in subcooled
nucleate boiling in forced convection, and the
results are to be presented in a following paper.

GENERAL CONSIDERATIONS IN BUBBLE
DYNAMICS
Mass transfer between liquid and vapor phase
Evaporation rate from a liquid surface into a
vapor whose density is less than the saturation
density corresponding to the liquid surface
temperature is approximated by [5]:

o ROT;ur +
m=a [27:M] (p

If p* is greater than p, equation (1) gives the
magnitude of the condensation rate. Liquid
surfaces associated with growing and collapsing
bubbles are believed to be new and clean; thus,
an accommodation coefficient of 10 was used
in these calculations. There are two prime issues
associated with the value of o determined by
past experiments. These issues have been dis-
cussed by Hickman [6, 7] who performed clever

- p*. (H
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experiments to prove his point, First, when «
was determined from evaporation of water by
certain experimenters, they located their thermo-
couples below the interface and measured a
temperature higher than that at the surface
which was being cooled by the evaporation.
Calculations of a were subsequently too low.
Secondly, the surfaces were “old”. That is, they
had been in existence for many seconds or
minutes. This invited either molecularly thin
impurities to be lodged in the surface or for
strong “‘potential wells” to form which also can
result in low values of o During boiling the
surface forms in several us and the entire bubble
lifetime is 250-500 ps in forced convection
subcooled nucleate boiling and several ms in
pool boiling. Thus, evaporation and condensa-
tion occurs on surfaces that are very new and
clean.

Dynamic equation for bubble radius
The Rayleigh equation [8] for growth of an
isothermal bubble is given as:

p1{RR + @R} =P - P, @

In some cases an additional pressure term
representing the effect of surface tension is
subtracted from the right-hand side of equation
(2). This term is 2 /R where ¢ is the surface
tension. The smallest value of R considered in
this work was 0-001 in. and for the case of water,
the missing term for the smallest radius has a
value of approximately 1 psi. As R increases,
this value decreases. P — P, may be as high
as 20-30 psi initially and decreases as the bubble
grows. Surface tension was neglected in this
work.

General scheme of bubble dynamics

In this model, use was made of a control
volume concept. The bubble was considered to
be a hemisphere with its base on a flat surface.
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One boundary of the control volume was the
interface between liquid and vapor at the
surface of the hemisphere. The other boundary
was the vapor—metal interfaces with a hole for
vapor insertion at the base of the hemisphere.

At the bubble top, mass was allowed to cross
the control surface by condensation or evapora-
tion. If an amount of mass was condensed on
the liquid surface during a time interval, the
total amount of mass in the control volume was
made smaller by that amount. However, the
actual mass added to the liquid stream was
neglected with respect to the total amount of
mass in the stream and with respect to the
dynamic motion of the stream (i.e. momentum
effects were neglected). Also, heat conduction
between vapor and liquid across the interface
at the bubble top was neglected. However, the
latent heat of condensation or evaporation was
included as a source or sink in the heat balance
of the liquid surrounding the bubble. The value
for the latent heat was taken to be the saturation
value corresponding to the bubble vapor density.

During most of the bubble lifetime, condensa-
tion at the bubble top provided a mass output
from the bubble. In the experiment a mass input
was provided by forcing a flow of steam through
a tiny hole in the plate. Experimental values for
the average mass input over the bubble life were
determined. In the model for this case, the mass
input to the control volume consisted of a
constant amount of steam per unit time.

In the control volume the main concern was
the total amount of mass inside the bubble,
while in the surroundings the main concern was
the thermal effect of the latent heat. Saturation
was assumed for the state of the vapor in the
bubble. The saturation density was calculated
as the vapor mass present in the control volume
divided by the volume. Pressure and temperature
of the mass in the control volume was assumed
uniform. Equation (1) governed the rate of mass
flow across the control volume boundaries.
Equation (2) determined the rate of growth of
the bubble; the driving pressure differential was
a function of time.
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BUBBLE DYNAMICS FOR THE ARTIFICIAL
BUBBLE
Description of bubble history and assumptions

During the bubble life, mass was added at a
constant rate and removed by condensation on
the bubble top. Change in the amount of mass
in the bubble was determined by the difference
between the mass input and the mass output and,
in turn, affected bubble pressure. During the
growth stage, pressure in the bubble was greater
than local liquid pressure, and this caused the
bubble to grow. However, as the surface area of
the bubble grew larger, the mass output also
increased because of the increasing area for
condensation. Eventually, mass output exceeded
mass input and the total mass in the bubble
started to decrease. Also, as the bubble volume
increased, the pressure in the bubble tended to
decrease. At some point, the pressure became
less than the local fluid pressure. These effects
coupled with the dynamics expressed in equation
{2) then led to a decreasing bubble radius and
thus bubble collapse.

At any point during the bubble lifetime, the
rate of mass output was controlled by the vapor
density in the bubble and the liquid surface
temperature. This temperature was controlied
by the rate of heat input associated with con-
densation at the surface and the transfer of heat
to the cooling stream. p* in equation (2) was
determined by the liquid surface temperature.

Assuming that the bubble was hemispherical
during all of its lifetime is not completely correct.
However, high speed photographs [3] show that
this is not too bad over most of the bubble
lifetime. During initial and final stages of the
bubbie lifetime, the shape of the bubble was not
that of a hemisphere. Since the steam came
through a hole in the heated plate with a diameter
of 00135 in, the initial interface between
liquid and vapor was a flat circular disk. This
was transformed into a roughly hemispherical
surface at some later time. Because of the
mathematical complexity of describing such a
transformation, the initial bubble radius was
assumed to be 0-013 in.

THEODORE T. ROBIN and NATHAN W. SNYDER

Establishing the vapor state and liquid temp-
erature distribution at the initial time was
required. Pressure was the most critical item
concerning the vapor state. For a bubble in
real boiling, the initial radius is usually smail
and the initial pressure is usually high (possibly
as much as 20-30 psia higher than ambient
liquid pressure). However, as the bubble grows,
pressure in the bubble approaches ambient
liquid pressure. In the experimental case, 0-013
in was usually about 50 per cent of the maximum
radius. Thus, bubble pressure was chosen
slightly larger than local stream pressure. First,
local liquid pressure near the bubble site for the
run under consideration was determined and
then the corresponding saturation temperature.
A temperature slightly greater than this value
was chosen as the vapor temperature in the
bubble and the vapor was assumed saturated
at this temperature. This made the bubble
pressure slightly larger than local liquid pressure.

Asa first approximation to the liquid tempera-
ture distribution at the beginning of the solution,
a step distribution was assumed. That is, the
temperature of a thin shell of liquid around the
bubble was assumed to be equal to the bubble
vapor temperature at that time. The remainder
of the liquid was assumed to be equal to the
inlet temperature of the cooling fluid as deter-
mined in the experiment. Shell thickness was
chosen so as to account for the heat input to the
bubble wall during growth from the flat disk
interface to the hemispherical interface with
a radius of 0013 in. This was done by first
assuming the time required to grow from a flat
disk to a hemisphere. Heat input during this
time was calculated by multiplying the time
interval by the rate of heat input which was a
constant. Q = mC,AT was used to calculate
the mass of liquid which would experience a
temperature rise corresponding to the difference
in temperature of the thin shell and the inlet
temperature. Knowing the density of the liquid,
the volume was then calculated from the known
mass, Finally, since the surface area of the bubble
was known, the shell thickness was obtained.
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Initial values for R and R were also required.
R was assumed to be zero, and then R was
calculated using equation (2). A uniform velocity
profile was assumed for the stream in which the
bubble was growing. In reality it was that corres-
ponding to fully developed turbulent flow for
the high velocity cases. In those cases, the
boundary layer was of the order of 103 in. and,
since the bubble radius was usually large
compared to this value, the uniform velocity
assumption was justified. Experimental mean
velocity was used as the magnitude of the
uniform velocity. However, for the low velocity
cases, the velocity profile was probably more
parabolic. Nevertheless, a uniform velocity,
equal to the mean velocity, was assumed here.
For high pressure applications, 2000 psi, and

=~y {r,0,y)

FiG. 1. Equivalent coordinate system for the single bubble
case.
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low velocities, a more accurate description of
the velocity and initial temperature profiles will
probably be required.

Heat diffusion from bubble surface

By making the bubble spherical rather than
hemispherical and making the mass input rate
twice as great as the actual rate, the mathematical
heat diffusion problem is similar to a case con-
sidered by Wittke [9]. In his case a uniform flow
of liquid impinged on a spherical bubble as
shown in Fig. 1. Since no heat flow occurred in
the y direction, the case under consideration
here and his case were similar under changes
stated above. For example, the heated plate
might be considered to be the x—z plane. (Note
that the heat transfer from the heated plate to
the fluid by convection was neglected.) The heat
diffusion equation to be solved was that derived
by Wittke plus a heat generation term:

T R? R?RoT
57 + [—U(l ——"TCOSG) +'—rT:|5;

_,_H 1+‘R3 sin()gz— (2T
r 253 = &\

00
20T 18*T cotf0T 4)
Far i T e a—e) e, ©

where T = T(t,r, 0).

Heat generation rate will be zero everywhere
except in a thin shell surrounding the bubble.
Here the latent heat of condensation (or vapor-
ization) will be considered a heat source (or
sink) uniformly distributed throughout the
shell. The numerical approach here is similar to
one considered by Dusinberre [10] for radiant
heating. Under this procedure the boundary
condition for the vapor liquid interface is

o _
or'

r=R.

0
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The other boundary condition is
oT
or
r=R

=0

max

where R, is a substantial distance from the
bubble surface. Boundary conditions in the 8
direction are

oT oT

5§ =0 and 6*0-

6=0 0 = 180"

Initial temperature distribution was described
previously. Now let

@ =(T - T T — T )

where T is the initial temperature of the cooling
fluid and T, is the saturation temperature
corresponding to the local fluid pressure, P,
Also let

=0

€

t =455z (5)

where d is the equivalent hydraulic diameter of
the channel. Let

_2r

r=— and P=— (6)
Also define a Péclét number
Py = Udle,. (7N

Now using equations (4)7), equation (3) be-
comes:

o0 Py 3 o0 260
Et_’_—f(l Rz cosear’ + Ty

3 2
[
pE1< 1y>sin06®—a

27 80 or?

200 1 3?0 cotfod

ror TR T 7T a0
O

8
dopChlm = 1) O

where y = dy/dt’.

Also with the transformations,

y=r -y and U= -—cosf {9)
equation (8) becomes:

o]
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P
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Numerical approximation to equation (10)
is developed in [2]. é®/0y and 0&/0u on the
left-hand side of equation (10) could not be
represented with the same numerical approxima-
tion as those quantities on the right-hand side,
possibly caused by the assumed initial tempera-
ture distribution (see Appendix A).

Method of advancing numerical solution

After the solution had been advanced up to
a time t, the following quantities were known:
1. State of bubble vapor (density and pressure).
2. R, R, R and bubble volume.
3. Amount of mass in the bubble.
4. Liquid temperature at the vapor-liquid inter-

face.
5. Liquid temperature distribution.

To advance the solution an increment of
time, the following procedure was used:

1. Since R, R, R and the bubble vapor pressure
were known, change in R, R, R was calculated
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with the aid of equation (2) and a Taylor series
expansion for R and R (see Appendix B).

2. Equation (1) was used to calculate the
amount of vapor condensed. This involved
calculating the saturation vapor density corres-
ponding to the known liquid surface tempera-
ture.* Using this value and the known value of
the bubble vapor density, the amount condensed
was calculated.

3. New total mass in the bubble was calculated
by adding to the old total mass the difference
between the amount condensed and the amount
added by the constant rate of mass addition.

4. Volume was calculated using the new
value of R found in step 1. This was divided into
the new mass found in step 3, and the result was
the new density. Under the assumption that the
vapor in the bubble was saturated, the new
pressure was determined from the steam tables.

5. Latent heat represented by the condensed
steam was then used along with the numerical
approximation to equation (10} to calculate the
new surface temperature and the new liquid
temperature distribution.

Following this procedure, the variables were
determined over the life of the bubble.

COMPARISON OF MODEL AND EXPERIMENTAL
RESULTS

Predictions from the above model were
compared with experimental data for steam
mjection through (-0135 in. hole in a heated
plate and into a subcooled stream of water
flowing parallel to the heated plate. The
experimental data are presented and discussed
in [2, 3]. Comparison with the model was based
on maximum bubble volume (radius). Maximum
bubble volume was determined from high speed
motion picture film. Bubble frequency was
about 4000 bubbles per s and camera speed was
8000 frames per s. Thus, only two or three frames

* The variation in T,, with 6 was taken into account in
using equation (1). The bubble surface was divided into a
number of segments for the numerical solution and equation
(1) was applied to each segment individually.
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were available per bubble. Maximum bubble
volume was plotted as a function of time for
about 100 frames. The largest bubble observed
was selected as the maximum bubble size. Since
the bubble radius is large over a significant
portion of bubble life, several frames should
contain bubbles very close to maximum size.
The largest error involved was caused by the
assumption of hemispherical shape and the
fact that the bubble was observed in only one
plane. Overall error in bubble volume was
estimated to be + 10 per cent. Bubble frequency
(lifetime) was also determined from the plot of
the high speed motion picture film. In a sequence
of three frames, the bubble was observed to be:
(1) in initial growth; (2) near maximum size;
and (3) in final state of collapse. Thus, bubble
lifetime was approximately two times the time
interval between frames. Error in bubble life-
time measurement was estimated to be +17
per cent. Because of the slow framing rate, no
attempt was made to determine an experimental
radius vs. time curve.

One unknown in the mathematical model is
the value of ¢, that is effective in the liquid
surrounding the bubble. &, was assumed, and
the choice which resulted in agreement between
theory and experimental results was noted.
Bubble radius as a function of time as predicted
by the theoretical model is shown in Fig. 2 for

0-030

0-025- .'.,.JM"\.
~ ™, *
/ . .
£ o-oz0f / Nelot
& s -s—e~ Theory \\
S ook o ——— Estimated \
e o/ \
K / \\
-
.g D-Oidr / \
@ \\
0-005| . .. Theory Experimental\
lMuxlmum radius in 0-02655 0-02660 \
Bubble lifetime us 296 256 \
o T T00 —Tho 260 256 3o
Time, us

FI1G. 2. Bubble radius as a function of time for run no. 7.
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the conditions of experimental run no. 7 (see [3] ;
the pertinent variables were: mass input rate
= 0692 Ib/h, U = 120 ft/s, T; = 110°F, and
P, = 160 psia). ¢ was 12 ft>/h, and this
choice resuited in a maximum radius of 0-0266
in. as compared to the experimental value of
0-0266 in. Predicted value and observed value
of the bubble lifetime are 286 and 256 ps, res-
pectively. This comparison is not as good, but
it is within experimental error.

Near the beginning and end of the bubble life,
the theoretical model did not correctly predict
the physical situation. It was realized that the
model developed would be most accurate only
when the bubble size is large. Because the bubble
size was large during most of its lifetime, the
theoretical model is acceptable for the present
even with the poor prediction for small bubble
radii.*

Another source of inaccuracy in the solution
to the model is the use of equation (2) for bubble
growth in a uniform velocity field. Assuming
bubble remains spherical in the velocity field
(as in [9]) equation (2) would have additional
terms of the order of 4 pU?2. This term would be
negligible for the low velocity cases. For
U =19 ft/s, 3pU? = 0:03 psi and for U = 12
ft/s, 3 pU? = 1-0 psi. However, for U = 255
ft/s, 3 pU? = 45 psi which is about 25 per cent
of P,

From the experimental data [3], an increase
in the velocity from 12-0 to 25-5 ft/s resulted in a
25 per cent decrease in maximum bubble radius
from 00266 to 0-020 in., other variables held
essentially constant. Most of this decrease is
attributed to an increase in ¢, and a faster move-

* Theoretical bubble radius shown mn Fig. 2 does not
completely collapse. After an initial collapse, the bubble
enters a new growth phase. This behavior does not indicate
that the radius vs. time solution is unstable. The observed
behavior is caused by the assumption of a constant rate of
vapor input to the bubble. During the collapse phase, this
constant input causes a rise in bubble pressure as shown in
Fig. 6. The resulting bubble growth phase is in accord with
the assumed dynamic equation for bubble radius, equation
(2). P — P, becomes large enough to initiate a new growth
phase.
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ment of colder fluid over the bubble (both
increasing the condensation rate). The theoret-
ical maximum bubble radius was a strong func-
tion of the assumed value of g,; a 33 per cent
change in theoretical maximum bubble radius
could be caused by a 5 per cent change in ¢,
(see curves 2 and 3 of Fig. 12 of [2] or of Fig. 4
of [12]). Thus, even if the full 25 per cent change
in maximum bubble radius (caused by changing
velocity from 12 to 25-5 ft/s) is attributed to
1pU?, only a 5 per cent change in the reported
value of ¢, would be required to have agreement
between theoretical and experimental maximum
bubble radius. In the present application,
inaccuracies because of the use of equation (2)
in a uniform velocity field, should result in
errors in the reported values of ¢, of S per cent
or less. In light of the 10 per cent error in the
experimental data for maximum bubble radius,
use of equation (2) was acceptable. Also,
because the bubble surface was usually not
smooth, a more detailed analysis does not seem
warranted.
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o 0-02¢t-
3 Run
° Theory no.
o
2 —— 8
o
% /7y —a— 9
L ool /s ~—t— |0
] —— 14
—~= Estimated
o] H 1 L L
0 50 100 150 200
Time, pus

FiG. 3. Bubble radius as a function of time for runs no. 8-11.

Bubble radius as a function of time (up to the
maximum bubble radius) for several other
experimental runs is shown in Fig. 3. Some
pertinent information is tabulated in Table 1.
Since the velocity was the same for runs 8, 9 and
10, the value for the effective thermal diffusivity
was expected to be approximately the same
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value for all three runs. Only the change in the
cooling fluid temperature and that in the vapor
input rate would change the experimentally
observed maximum radius in runs 9 and 10
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Values of ¢, which yield agreement between
experiment and theory are plotted as points in
Fig. 4 as a function of the cooling stream
velocity. Since the flow condition was that of

Table 1. Results of runs no. 8,9, 10 and 14 (see [3])

Maximum bu bble radius

R Ty U & Model Experimental Deviation
un °F) (ft/s) (ft*/h) (in) (in) (%)
8 110 255 300 001976 0-0200 -1
9 80 255 3-00 0-01857 0-0172 + 8

10 140 255 3-00 0-02893 0-0314 -8

14 110 19 0-06 002763 0-0280 -1

from the value observed in run 8. g, which
yielded agreement between the theoretically
predicted maximum bubble radius and that
experimentally observed for run 8, was used in
the model for runs 9 and 10. In this way the

w
i
®

Diffusivity, 2/hr
R

ry L
(o] 10

Velocity,

26
ft/s

30

FiG. 4. Effective thermal diffusivity as a function of cooling

stream velocity: solid line is theoretical value for eddy

diffusivity for fully developed turbulent flow, 0-02 in. from
wall.

consistency of the theoretical model with the
actual physical phenomenon could be deter-
mined. For run 9, the predicted maximum
radius differed by only +8 per cent from the
observed value, while for run 10 the difference
was only —8 per cent.

fully developed turbulent flow, the theoretical
value of the eddy diffusivity for momentum
transfer in fully developed turbulent flow in a
pipe at a distance of 0-02 in. from the wall is
shown for comparison. This theoretical value
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F1G. 5. Bubble mass as a function of time for run no. 7.
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was calculated using the following expression

[113:

g, = (04)? 22 (1 —3;)2—25»\/(;91) (1)

Good agreement between ¢, and g, offers a
significant degree of confidence in the concepts
and methods used in the solution to this model.
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large values of R. Hence, the behavior indicated
n the following plots for times < ~ 30 us and
> 200 ps are certainly questionable. Figures 5-7
represent the bubble mass, the bubble pressure,
and the liquid surface temperature as functions
of time, respectively. Figures 8-13 represent the
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FiG. 6. Bubble pressure as a function of time for run no. 7. o ‘i \ 'y
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A number of variables were recorded for run o 0 \-4 ATt —

7 in order to characterize this solution to
the theoretical model. Again, it is emphasized
that because of the assumptions concerning the
initial conditions, the solution is most valid for

Rodiol distance, in x 10*

F1G. 9. Dimensionless temperature distribution for the cool-

ing liquid as a function of radial distance from the bubble
surface for u = — 1 (upstream direction) for run no. 7.
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temperature distribution in the liquid surround-
ing the bubble at various times during its life.
Liquid surface temperature as a function of u
at various times during the bubble life is shown
in Fig. 14. To be noted in Fig. 14 is the fact that
the temperature of the liquid surface varied at

\
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Fig. 10. Dimensionless temperature distribution for the
cooling liquid as a function of radial distance from the bubble
surface for u = - 0-1667 for run no. 7.
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timesasmuchas20°Ffromu = —1tou = +1.
Also, the temperature distribution in the up-
stream direction {see Fig. 9) was much steeper
than in the downstream direction (see Fig. 13).
These results are reasonable; since cold fluid
comes from the upstream direction, the surface
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FiG. 12, Dimensionless temperature distribution for the
cooling liquid as a function of radial distance from the bubble
surface for p = + 1 (downstream direction) for run no. 7.
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Fig. 11. Dimensionless temperature distribution for the
cooling liquid as a function of radial distance from the bubble
surface for u = — 0-1667 for run no. 7.
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FiG. 13. Dimensionless temperature distribution for the
cooling liquid as a function of radial distance from the bubbie
surface for z = + 1 (downstream direction) for run no. 7.
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FiG. 14. Liquid surface temperature as a function of p for
run no. 7.

temperature of the fluid at this end should be
coldest. Also, as the fluid moves over the
bubble, its temperature should increase due to
the latent heat of condensation. Experimental
values for the relations indicated in the above
plots would be useful.

CONCLUSIONS

1. Effective thermal diffusivity near a single
steam bubble growing in a fully developed
turbulent stream is approximately the value of
the eddy diffusivity for momentum transfer
about one bubble radius from the wall. This value
ranged from about 01 to 3-0 ft*/h for the case
considered.

2. Coupling of equations (1) and (2) with a
heat and mass balance of the bubble system
appears to be sufficiently accurate for predicting
bubble dynamics.

3. This model may be used, as a first approxi-
mation, to predict the rate of heat transfer in
possible heat exchanger applications using this
mode of heat transfer.

THEODORE T. ROBIN and NATHAN W. SNYDER
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APPENDIX A

0®/0y and 8®/8u on the left-hand side of equation (10}
could not be approximated in the same manner as those
quantities on the right-hand side. The presence of these
derivatives on the right-hand side was caused by heat
conduction, whereas, on the left-hand side the reason was
fluid motion. The cause which would not allow the two
cases to be treated in a similar manner can be explained by
considering a simplified one~dimensional problem of the
same nature.

Consider one-dimensional flow of liquid in the +x
direction (see Fig. 15) with a velocity of U ft/s with respect
to the coordinate system. Now the equation under con-
sideration is:

aT(x’ 9 EV2T(x, 1)

Ll + VVT(x,1) = (12)
where ¥ is the velocity vector. The term ¥ - V7 is caused by
bulk fluid transport. Equation (12) is equivalent to
oT(x,t) dT(x, t) 62 T(x, t)
s TV PR

(13)
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For this illustration, ¢, is assumed to be zero and equation
(13) becomes :

oT(x, 1) o0T(x,1) _
e o
The usual approximations to these derivatives are
aT _ T:',n+l - T:I.n
o Dt

0. (14)

and

a_T_ - T.}+l,u - Tl—l,l

0x 2Dx
where J relates to the space coordinate, n relates to time,
Dx is an increment of x, and Dt is an increment of ¢. Using
these equations, (14) becomes:

Tl,n+1 - Tl.u + U’I:I+l,n - T.'I—l,n =0
Dt 2Dx

U Dt
TI,.+1 = T},u + _—_x Tl—l,n - ?'l; Tl+l,u. (15)
Now assume the initial condition such that T; o = T;_, o <
T;+1,0- In this case, equation (15) indicates that the higher

the value of 7j ., ,, the lower the temperature at J will be at

+m
- 7’0'7'||'7-2|7'3I'7'4;7'5|°"
—_— { [ O l
[ | | | | |
P
| | | | |
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)

F1G. 15. Coordinate system for the one-dimensional illus-
tration.

time (n + 1) - Dt. Physically, this is impossible. Since U is
in the +x direction and since &} equals zero, T;., at any
time should have no effect on 7. The error in the above
derivation arises from the approximation of 4T/0x. A
correct one for this case is:

oT _ ’I.‘I,u - Tl-l,n.

ox Dx
Using this, the equivalent of equation (15) is:
Dt Dt
L1 =T. + Ub; Lot = U‘)Tx .. (16)

Equation (16) is logically correct. Consider the initial
condition: Tj o » T;_, o. As fluid of high temperature,
Ty, o, leaves cell J to go into cell J + 1 and as fluid of low
temperature, T;_, o, leaves cell J — 1 to go into cell J, the
resulting temperature of the homogenized fluid in cell J is
lower than T, ,. Furthermore, the higher the value of 7;_, o,
and the lower the value of T} _, ,, the larger would be the
change in temperature of location J. Thus, derivatives
arising due to the transport of bulk fluid must be treated in
a non-conventional manner for the present problem.

During the initial attempt to solve equation (10), several
methods were used. All attempts used the conventional
numerical approximations to the derivatives ®/dy and
O0®/0yu, regardless of their origin. Implicit, explicit and a
combination implicit-explicit were all tried. However, an
instability in the predicted temperature distribution per-
sisted. Reasoning similar to that illustrated above in the
one-dimensional case led to a representation of these terms
which produced a stable solution.

APPENDIX B

Numerical approximations for R, R and R are indicated
below :

. Dt?
R, =R, +R, Dt + R,,—z—-

R,.i=R,+R,-Dt
Rn+l = [P,. —Po - %(Rn)z]

51

1
R

where R, indicates the bubble radius at time n - Dt.

ANALYSE THEORIQUE DE LA DYNAMIQUE DES BULLES POUR UNE BULLE DE
VAPEUR PRODUITE ARTIFICIELLEMENT DANS UN ECOULEMENT TURBULENT

Résumé —On donne un modéle mathématique pour une bulle de vapeur produite artificiellement croissant
sur une surface et 4 I'intériear d’un écoulement turbulent sous-refroidi paralldle 2 la surface. Ce modéle
a &é essayé pour I'injection de vapeur 4 travers un trou de 0,343 mm de diamétre dans une plaque d’acier
inoxydable et dans un écoulement d’eau avec des nombres de Reynolds allant d’environ 0,9.10*2a 2. 10%,
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des températures globales d’entrée de 26,7 & 60°C et environ a {a pression atmosphérique. Sous ces con-
ditions, environ 4000 bulles par seconde étaient formées avec un rayon de 0,50 2 0,75 mm de diamétre,
Le transport de chaleur par bulle variait d’environ 1072 4 5. 1072 Joule. Des considérations de base de
la dynamique des bulles pour ce modéle sont discutées. La condensation 2 Pinterface bulle de vapeur—
¢coulement turbulent est un constituant important de ce modéle, La diffusion qui s’ensuit de la chaleur
latente associée dans I'écoulement turbulent était également importante. Les équations mathématiques
sont données et la méthode de résolution est indiquée. L’accord avec les résultats expérimentaux démontre
1a validité de ce modéle et de la méthode de résolution.

THEORETISCHE UNTERSUCHUNG DER BLASENDYNAMIK FUR EINE KUNSTLICH
ERZEUGTE DAMPFBLASE IN TURBULENTER STROMUNG

Zwsammenfassang—Es wird ein mathematisches Modell angegeben fiir eine kiinstlich erzeugte Dampfblase,
die auf ciner Oberfliche in einen turbulenten unterkithiten Strom, der parallel zur Oberfliche fliesst,
hineinwichst. Dieses Modell wurde getestet fiir Dampfinjektion durch eine 0,343 mm Bohrung in einer
Platte aus rostfreiem Stahl in einen Wasserstrom mit Reynolds-Zahlen von 0,9 x 10* bis 2,0 x 10° und
Einlass-Badtemperaturen von 27 bis 60°C, in der Nihe des atmospharischen Druckes, Unter diesen
Bedingungen wurden etwa 4000 Blasen pro Sekunde gebildet mit 0,5-0,8 mm Radius, Die Warmemenge
pro Blase variierte von etwa 0,01 bis 0,053 J. Grundlegende Betrachtungen der Blasendynamik fiir dieses
Modell wurden diskutiert. Die Kondensation an der Blasengrenze zwischen Dampf und turbulenter
Stromung ist eine Hauptkomponente des Modells. Anschliessende Diffusion der damit verbundenen
Verdampfungswirme in die turbulente Stromung war ebenfalls wichtig. Mathematische Gleichungen
wurden aufgestellt, und die Losungsmethode ist angedeutet. Ubereinstimmung mit experimentellen
Ergebnissen zeigt die Giiltigkeit dieses Modells und der Losungsmethode.

TEOPETUYECKUN AHAJIN3 IUHAMMKU IIV3bLIPHKA - UCKYCCTBEHHO
CO3JAHHOTO IIY3bIPHRKA TIAPA B TYPBYJEHTHOM IIOTOKE

Aunoranaas—IlpuBoauTCH MaTeMATHYECKAA MOJENb HCKYCCTBEHHO CO3/IaBAEMOTO IIYBHIPLKA,
PacTyniero Ha HOBePXHOCTH W B NAPALIENbHOM 5TOH HOBePXHOCTH TYpOYJCHTHOM NOTOKE
IePEOXTAKACHHOM HUTKOCTH. OTa MOJeNs NpOBepANach ANA CIAy4adA BXYBa Hapa depes
0.0135 nmoitm. oTEepCTHE B IJIACTHHE M3 HepiKaBelollelt CTaml B WOTOK BOAH ¢ 9HCIAMM
Pettnonnaca or 0.9 x 104 go 2.0 x 105, remneparypolt agpa noroka Ha sxone o7 80 zo 140°¢
mapieHueM, 6ausxoB ® armocdepuomy. [Ipu 9TMX YCaoBMAX B CekyHAY 00pasoBHBaIMCh
orono 4000 nysuperop paguycom 0,02-0,03 moitma. TennooGmen, mpuxopsnmitca na OfuH
mysupek, coctasasn 0T 1 x 1075 00 5 x 107 5 BTE. Pacemarpusaiores ocuodBHbEe coofpamenns
OTHOCHTENBHO MHAMMKH NYSHPHKOB jaa o7olt Momenu. OCHOBHHM HKOMIIOHEHTOM MONEIH
ABAAETCA ROHZEHCALMS Ha NOBePXHOCTH pasfela IyaHpek napa — TypOyJeHTHHE NOTOR.
Hemanosamua u nuddysus cBAZAHHOT0 CKPHTOro Tenaa B TypOynenTuri norox. Ilomyyenn
MaremaTHYeCKHe YPABHEHWS M YKasane Meroxsl pemienwd. COOTBETCTBHME ¢ DHCHEPUMEH-
TANLHHMYA PE3YILTATAMA CBUETENBCTRYET O NPHTOZHOCTA DTO MORENH M METOJA PEHIeHWH.



